Lecture 6:
Sorting and Searching

Stephen Huang
March 21, 2023

UNIVERSITYof HOUSTON

Python Sorting Functions
Sorting Algorithms

Linear Searching Algorithms
Binary Search Algorithm

N

UNIVERSITYof HOUSTON

1. Python Sorting Functions

A typical task that requires a list/array so that all
the data values can be stored in memory
simultaneously is sorting values into order.

« For numbers, the order desired might be
ascending order, i.e.,

a[0] <a[l] < ... <a[n-1].

« There are many sorting algorithms known with
different efficiency.

UNIVERSITYof HOUSTON 3

Before:

After:

UNIVERSITYof HOUSTON 4

« There are two functions related to sorting.

— sort (key, reverse)

— sorted (i1terable, key, reverse)

* Note that sort () is a method of the list object,
but sorted () is a built-in function of Python.

UNIVERSITYof HOUSTON :

« This method sorts the list in place, using only
less-than-comparisons (<) between items.

« EXxceptions are not suppressed - the entire sort

operation will fail if any comparison operations
fail.

 sort() accepts two arguments that can only be
passed by keyword (keyword-only arguments):

— The key specifies a function (of one argument) that is
used to extract a comparison key from each element
in /terable

— The reverse is a Boolean value.

UNIVERSITYof HOUSTON 6

« The default comparison is the comparison of the
values in the list (<). With the function
parameter, we can change that.

« The function, call it f(), is applied to all
elements, and the sorting is based on the
function values f(e) instead of e.

— Compare by the length of strings
— Compare by the absolute value of numbers

» The sort() method is guaranteed to be stable. A
sorting is stable if it does not change the relative
order of elements that compare equally.

UNIVERSITYof HOUSTON 7

Why sorted()?

Comparison sort() sorted()
Method A method of list object | A built-in function
list = ' le, k
Calling Exam | list.sort (key, reverse) ist = sorted (iterable, key,
reverse)

's bei he i le (li |
What's being The list itself The iterable (list, tuple,
sorted etc.)

What's The list is being sorted | Returns a list, iterable
Returned In-site unchanged

UNIVERSITYof HOUSTON

Sorted()

« Default parameters:
sorted(iterable, key=None, reverse=False)

— Returns a new sorted list from the items in iterable.
— Built-in, no need to import anything.

« The purposes of the two parameters are similar
to those of the sort().

UNIVERSITYof HOUSTON 9

2. Sorting Algorithms

« We will introduce two “simple” sorting algorithms:
— Bubble sort

— Selection sort

« These algorithms are “simple” because it is relatively
easy to explain. It does not mean the algorithms
are efficient to execute.

 In fact, they are not efficient. They take O(n2) units
of time for a list of length n.

« The more efficient algorithms take O(n log n) units
of time.

UNIVERSITYof HOUSTON

10

Sorting Algorithms

« Most sorting algorithms compare list elements
(<, =, >) and move elements around to put
them in the proper order.

 Typically, they “swap” elements in the list to
move the elements.

« Sometimes, we measure the efficiency of these
algorithms by the number of comparisons or
swaps.

 Ideally, they should also use a small number of
fixed memory spaces to achieve the goal.

UNIVERSITYof HOUSTON

11

Bubble sort

51714)]9]3

514|739

No guarantee that it is sorted. Sorted) BubbleSort

UNIVERSITYof HOUSTON 2

5

7

/
/

v/
//

5

/5

4

9

4

9

¥
//

Sorted

UNIVERSITYof HOUSTON

Bubble sort

13

Bubble sort

def bubble (a) :
for ub in range(len(a)-1, 0, -1):
for 1 in range (ub):
for the unsorted part
if a[i]>a[i+1]: # notinorder
swap them

ali],ali1+1l] = a[1+1l],a[1]
return (a) s[71a]s]s
7
5| 4 7 3/79
Vi
4 | 5 3/7 9

V
a | 3/l

/.
3fa|s|7]9

/ soned

UNIVERSITYof HOUSTON 14

Tracing the code

NGO
~

V)
~

19,
19,
19,
19,
2y
3,
3

~

~

~

~

~

DN W w W
~

~

41,
41,
22,
22,
2y

19,
19,
19,

45,
22,
41,
2y
22,
22,
22,
22,

22,

45,

2y
29,
29,
29,
29,
29,

UNIVERSITYof HOUSTON

111, 2,

2y
29,
41,
41,
41,
41,
41,

29,
45,
45,
45,
45,
45,
45,

29]
111
111
111
111
111
111
111

15

Selection Sort

 Strategy:

— There are two parts to the list: one sorted and
unsorted. The sorted part is empty initially. All the
numbers are in the unsorted part.

— Select the smallest element from the unsorted part
and swap it with the first unsorted element.

— We have decreased the unsorted part's size and
increased the sorted part. Keep doing this, and we
will have the whole list sorted.

UNIVERSITYof HOUSTON 16

N\

9

3

5

5

7

N\

UNIVERSITYof HOUSTON

Selection sort

17

Selection Sort

def swap (b, 1, 7J):

def selection sort(a):
for 1 in range(len(a)-1):

min_i = 1

for] in range(i1+l,len(a)) :

if a[min 1]>afj]:
min 1 =]

swap (a, 1, min 1)

UNIVERSITYof HOUSTON

18

L BN TORENTORERTOREN T BN alEN N

~ ~ ~ ~ ~ ~ ~ ~

O = I o I o B o B o B o B o

19

UNIVERSITYof HOUSTON

3. Linear Search

« Search: Given a list L and a value x, find the
index of x in L, or return None.

 Linear Search: Compare with one element of the
list at a time from the beginning of the list.

 Binary search:

— Assume the list is sorted in increasing order

— Compare with the middle element of the list and
search 2 of the list for x depending on the
comparison result.

UNIVERSITYof HOUSTON 20

Linear Search 1

Find the (last) one with the highest index.

def search(x,a):

1dx = None
for 1 i1n range(len(a)):
1f a[1]==x:
1dx = 1

return 1dx

UNIVERSITYof HOUSTON

21

Linear Search 2

Find the (first) one with the lowest index

def search(x,a):
for 1 1n range(len(a)):
if a[1]==x:
return 1 < You may return at

any point inside a

return None function

Make sure there is a
return along every
path

UNIVERSITYof HOUSTON 22

Linear Search 3

Find the first one with the lowest index.

def search(x, a):
for 1, v i1n enumerate(a):
1f v == x:
return 1

return None

UNIVERSITYof HOUSTON 23

Linear Search 4

def search(x,a,lb,ub) :
1f lb>=ub:
return None
elif a[lb]==x:

return 1D
else:

return (search (x,a, 1lb+1,ub))

UNIVERSITYof HOUSTON 24

4. Binary search

« The binary search assumes the list is already
sorted.

« A comparison with the search value x with an
element e in the list results in three possibilities:

—e <X
—e ==X
— e > X (e>= x if duplicates are allowed in the list)
« So, what will be the best selection of element e?

« It takes only O(log n) units of time to find the
element in a list of length n.

UNIVERSITYof HOUSTON

25

Binary Search

low high

Mid

Mid = (0+8)/2 = 4

UNIVERSITYof HOUSTON 26

Case 1 (x=10)

low high

mid

UNIVERSITYof HOUSTON 27

Case 2 (x=5)

]

0 1 2 3 4 5 6 7 8

315719101215 |17 |23

1

mid

UNIVERSITYof HOUSTON 28

Case 3 (x=17)

]

0 1 2 3 4 5 6 7 8

315719101215 |17 |23

3

high

low

mid

UNIVERSITYof HOUSTON 29

315|719 1012|1517 |23
3|51 71]°9
/7 19

UNIVERSITYof HOUSTON

30

17

12

15

17

23

17

23

UNIVERSITYof HOUSTON

31

17

12

15

17

23

12

UNIVERSITYof HOUSTON

32

low O

Mission
Impossible
Mid

UNIVERSITYof HOUSTON

high

33

6

7

8

9 10 11 12

10

12

15

17

23

32

35

37

43

UNIVERSITYof HOUSTON

Working Example

34

Non-recursive Binary Search

def b search(x,list):

low=0

high=len (list)

while low<high:
mid= (low+high) //2
1f x==list[mid]: return mid
elif x<list[mid]: high = mid
else: low = mid+l1

return None

UNIVERSITYof HOUSTON 35

Recursive Binary Search

def b search(x,list, low, high):
while low<high:
mid= (low+high) //2
1f x==list[mid]:
return mid
elif x<list[mid]:
return (b search(x,list,low,mid))
else:
return (b search(x,list,mid+1,high))
return None

UNIVERSITYof HOUSTON 36

