
Lecture 6:
Sorting and Searching

Stephen Huang
March 21, 2023

1

Contents
1. Python Sorting Functions

2. Sorting Algorithms

3. Linear Searching Algorithms

4. Binary Search Algorithm

1. Python Sorting Functions
• A typical task that requires a list/array so that all

the data values can be stored in memory
simultaneously is sorting values into order.

• For numbers, the order desired might be
ascending order, i.e.,

a[0] a[1] ... a[n-1].

• There are many sorting algorithms known with
different efficiency.

3

Example

4

5 7 4 9 3

Before:

After:

3 4 5 7 9

Sorting
• There are two functions related to sorting.

– sort(key, reverse)

– sorted(iterable, key, reverse)

• Note that sort() is a method of the list object,
but sorted() is a built-in function of Python.

5

Sort()
• This method sorts the list in place, using only

less-than-comparisons (<) between items.

• Exceptions are not suppressed - the entire sort
operation will fail if any comparison operations
fail.

• sort() accepts two arguments that can only be
passed by keyword (keyword-only arguments):
– The key specifies a function (of one argument) that is

used to extract a comparison key from each element
in iterable

– The reverse is a Boolean value.

6

Sort()
• The default comparison is the comparison of the

values in the list (<). With the function
parameter, we can change that.

• The function, call it f(), is applied to all
elements, and the sorting is based on the
function values f(e) instead of e.
– Compare by the length of strings

– Compare by the absolute value of numbers

• The sort() method is guaranteed to be stable. A
sorting is stable if it does not change the relative
order of elements that compare equally.

7

Why sorted()?

Comparison sort() sorted()

Method A method of list object A built-in function

Calling Exam list.sort (key, reverse) list = sorted (iterable, key,
reverse)

What's being
sorted The list itself The iterable (list, tuple,

etc.)

What's
Returned

The list is being sorted
in-site

Returns a list, iterable
unchanged

8

Sorted()
• Default parameters:

sorted(iterable, key=None, reverse=False)
– Returns a new sorted list from the items in iterable.

– Built-in, no need to import anything.

• The purposes of the two parameters are similar
to those of the sort().

9

2. Sorting Algorithms
• We will introduce two “simple” sorting algorithms:

– Bubble sort

– Selection sort

• These algorithms are “simple” because it is relatively
easy to explain. It does not mean the algorithms
are efficient to execute.

• In fact, they are not efficient. They take O(n2) units
of time for a list of length n.

• The more efficient algorithms take O(n log n) units
of time.

10

Sorting Algorithms
• Most sorting algorithms compare list elements

(<, =, >) and move elements around to put
them in the proper order.

• Typically, they “swap” elements in the list to
move the elements.

• Sometimes, we measure the efficiency of these
algorithms by the number of comparisons or
swaps.

• Ideally, they should also use a small number of
fixed memory spaces to achieve the goal.

11

Bubble sort

12

5 7 4 9 3

5 7 4 9 3

5 4 7 9 3

5 4 7 9 3

5 4 7 3 9

No guarantee that it is sorted. Sorted

Bubble sort

13

5 7 4 9 3

5 4 7 3 9

4 5 3 7 9

4 3 5 7 9

3 4 5 7 9

Sorted

Bubble sort
def bubble(a):

for ub in range(len(a)-1, 0, -1):

for i in range(ub):

for the unsorted part
if a[i]>a[i+1]: # not in order

swap them
a[i],a[i+1] = a[i+1],a[i]

return(a)

14

Tracing the code
[19, 3, 41, 45, 22, 111, 2, 29]

[3, 19, 41, 22, 45, 2, 29, 111]

[3, 19, 22, 41, 2, 29, 45, 111]

[3, 19, 22, 2, 29, 41, 45, 111]

[3, 19, 2, 22, 29, 41, 45, 111]

[3, 2, 19, 22, 29, 41, 45, 111]

[2, 3, 19, 22, 29, 41, 45, 111]

[2, 3, 19, 22, 29, 41, 45, 111]

15

Selection Sort
• Strategy:

– There are two parts to the list: one sorted and
unsorted. The sorted part is empty initially. All the
numbers are in the unsorted part.

– Select the smallest element from the unsorted part
and swap it with the first unsorted element.

– We have decreased the unsorted part's size and
increased the sorted part. Keep doing this, and we
will have the whole list sorted.

16

Selection sort

17

5 7 4 9 3

3 7 4 9 5

3 4 7 9 5

3 4 5 9 7

3 4 5 7 9

Selection Sort
def swap(b, i, j):

b[i], b[j] = b[j], b[i]

def selection_sort(a):

for i in range(len(a)-1):

min_i = i

for j in range(i+1,len(a)):

if a[min_i]>a[j]:

min_i = j

swap(a, i, min_i)

18

More
[5, 6, 8, 7, 4, 3, 2, 1]

[1, 6, 8, 7, 4, 3, 2, 5]

[1, 2, 8, 7, 4, 3, 6, 5]

[1, 2, 3, 7, 4, 8, 6, 5]

[1, 2, 3, 4, 7, 8, 6, 5]

[1, 2, 3, 4, 5, 8, 6, 7]

[1, 2, 3, 4, 5, 6, 8, 7]

[1, 2, 3, 4, 5, 6, 7, 8]

19

3. Linear Search
• Search: Given a list L and a value x, find the

index of x in L, or return None.

• Linear Search: Compare with one element of the
list at a time from the beginning of the list.

• Binary search:
– Assume the list is sorted in increasing order

– Compare with the middle element of the list and
search ½ of the list for x depending on the
comparison result.

20

Linear Search 1

Find the (last) one with the highest index.

def search(x,a):
idx = None
for i in range(len(a)):

if a[i]==x:
idx = i

return idx

21

Linear Search 2

Find the (first) one with the lowest index

def search(x,a):
for i in range(len(a)):

if a[i]==x:
return i

return None

22

You may return at
any point inside a

function

Make sure there is a
return along every

path

Linear Search 3

Find the first one with the lowest index.

def search(x, a):

for i, v in enumerate(a):

if v == x:

return i

return None

23

Linear Search 4
def search(x,a,lb,ub):

if lb>=ub:
return None

elif a[lb]==x:

return lb
else:

return(search(x,a,lb+1,ub))

24

4. Binary search
• The binary search assumes the list is already

sorted.

• A comparison with the search value x with an
element e in the list results in three possibilities:
– e < x

– e == x

– e > x (e>= x if duplicates are allowed in the list)

• So, what will be the best selection of element e?

• It takes only O(log n) units of time to find the
element in a list of length n.

25

Binary Search

26

3 5 7 9 10 12 15 17 23

low high

0 1 2 3 4 5 6 7 8

Mid

Mid = (0+8)/2 = 4

Case 1 (x=10)

27

3 5 7 9 10 12 15 17 23

low high

0 1 2 3 4 5 6 7 8

mid

Case 2 (x=5)

28

mid

3 5 7 9 10 12 15 17 23

low high

0 1 2 3 4 5 6 7 8

Case 3 (x=17)

29

mid

3 5 7 9 10 12 15 17 23

low high

0 1 2 3 4 5 6 7 8

Find 7

30

3 5 7 9 10 12 15 17 23

0 1 2 3 4 5 6 7 8

3 5 7 9 10 12 15 17 23

3 5 7 9 10 12 15 17 23

Find 23

31

3 5 7 9 10 12 15 17 23

0 1 2 3 4 5 6 7 8

3 5 7 9 10 12 15 17 23

3 5 7 9 10 12 15 17 23

3 5 7 9 10 12 15 17 23

Find 13

32

3 5 7 9 10 12 15 17 23

0 1 2 3 4 5 6 7 8

3 5 7 9 10 12 15 17 23

3 5 7 9 10 12 15 17 23

3 5 7 9 10 12 15 17 23

Find 13

33

Mid

3 5 7 9 10 12 15 17 23

0 1 2 3 4 5 6 7 8

low high

Mission
Impossible

Working Example

34

3 5 7 9 10 12 15 17 23

0 1 2 3 4 5 6 7 8 9 10 11 12

32 35 37 43

Non-recursive Binary Search
def b_search(x,list):

low=0

high=len(list)

while low<high:

mid=(low+high)//2

if x==list[mid]: return mid

elif x<list[mid]: high = mid

else: low = mid+1

return None

35

Recursive Binary Search
def b_search(x,list, low, high):

while low<high:

mid=(low+high)//2

if x==list[mid]:

return mid

elif x<list[mid]:

return(b_search(x,list,low,mid))

else:

return(b_search(x,list,mid+1,high))

return None

36

